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Abstract
We consider a model of environment-induced dissipationless decoherence of a
quantum system where the system is coupled to the bath degrees of freedom
via the system Hamiltonian itself. We solve exactly for the reduced density
operator of the system for an arbitrary spectral density of the thermal bath and
also write down an exact master equation in the Lindblad form. We compare
and contrast the above results with those obtained by considering the system
frequencies to be randomly modulated as in stochastic models. We observe
that a coupling to the bath as above necessarily induces a Kerr-like coherent
contribution in the reduced dynamics of the system. This Kerr-like term is
a reflection of the quantum nature of the bath and cannot be obtained from
stochastic models. For the special case of a harmonic oscillator we consider the
influence of decoherence and its relation with phase diffusion. Our numerical
results exhibit oscillations in the evolution of system variables which overall is
a signature of the quantum nature of the environment.

PACS numbers: 0530, 0540, 0545

1. Introduction

One of the major interests in quantum statistical mechanics is to unravel the exact quantum
feature of dissipation and decoherence of a dynamical system at all time ranges and at
all temperatures. Understanding the system–bath interaction to explore dissipation and
decoherence was first studied by Feynman and Vernon [1] and was used by Caldeira and
Leggett [2] to mimic an open quantum system. The latter authors popularized the quantum
Brownian motion model [3] and derived a master equation at high temperatures. System–
bath interaction within the weak-coupling regime is also well understood even at very low
temperatures, for example, in quantum optics [4]. Some others [5] including Hakim and
Ambegaokar [6] have given a master equation for the reduced density matrix of the system at
high temperatures, with a non-factorized initial condition. For a free particle, Hu et al [7] have
provided an exact master equation for a general spectral density of the bath and at arbitrary
temperatures, using an influence functional technique.
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The high-temperature and long-time limiting behaviour of a quantum system of interest,
influenced by its surroundings, is well understood. This behaviour can be pretty well simulated
by assuming that the environment introduces a classical noise in the system where the noise
can be modelled as a Gaussian–Markov process [8].

We are interested here in a process wherein the system undergoes decoherence but with
no dissipation of energy. Such decoherence models are studied by many authors [9] in the
Markovian limit or the high-temperature limit or at the level where the bath is acting as a
classical noise [5, 10]. A similar dissipationless decoherence model is also studied by Shao
et al [11]. They have concentrated more on an exact solution of the problem, which we have
also given by an operator disentanglement method. After that they solved the problem when the
bath is composed of two-level systems instead of harmonic oscillators. Besides, we have asked
the following questions: what happens to the decoherence of a quantum system at arbitrary
low temperatures and at the ultrashort-time limit? To what extent is the system affected by the
quantum nature of the surroundings? How do we obtain the Kubo-oscillator [10] behaviour
from a system–heat bath model in the high-temperature limit?

To put our work in proper perspective, let us consider an interaction between a system of
interest and the surroundings, i.e. take a total Hamiltonian HT as

HT = Hs + HR + Hint. (1.1)

The reservoir Hamiltonian, HR, is composed of an infinite number of harmonic oscillators,

HR =
∑
j

h̄ωjb
†
j bj (1.2)

with [bi, b
†
j ] = δi,j and assume the interaction is of quantum non-demolition type, satisfying

[Hs, Hint] = 0. (1.3)

This kind of system–bath interaction is considered by others to obtain the pure decoherence
dynamics of the reduced system [9]. Equation (1.3) implies that Hint is a constant of motion
generated by Hs. For the simplest possible such interaction, we may assume

Hint = Hs

∑
j

gj (bj + b
†
j ) (1.4)

where gj is a c-number coupling constant. In order to understand the decoherence of various
quantum systems, Tameshtit and Sipe [9] have derived a master equation using Born–Markov
(BM) approximations as

dρ

dt
= − i

h̄
[Hs, ρ] − γBM(HsHsρ + ρHsHs − 2HsρHs) (1.5)

with

γBM = γ0kT

h̄
(1.6)

where

γ0 = Limω→02π
|g(ω)|2I (ω)

ω
. (1.7)

Here I (ω) is the spectral density of the bath and a high-temperature approximation is introduced
in concurrence with the Markov approximation.

In what follows we provide an exact solution of the problem in section 2 and compare
various classical and quantum features. The BM limit is obtained as a special case of the exact
theory. In section 3 we compare the exact result with a classical stochastic model of frequency
modulation of the quantum system. Phase diffusion of a harmonic oscillator, which results
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from decoherence, is discussed in section 4. In section 5 we show an alternative derivation of
the result obtained earlier in section 2, through the introduction of an effective Hamiltonian,
and the correspondence with the Kubo-oscillator case is established. The paper is concluded
in section 6.

2. Exact solution of the model

Here we provide an exact solution for the reduced density operator of the system and, using
this solution, derive next a master equation and the concomitant survival probability. For this
purpose it is useful to rewrite the Hamiltonian in equation (1.1) as

HT = Hs +
∑
k

h̄ωkb
†
kbk + Hs

∑
k

gk(bk + b
†
k) + H 2

s

∑
k

g2
k

h̄ωk

(2.1)

where gk is a dimensionless coupling constant.
Note that we have added a ‘counter-term’, i.e. the last term on the right-hand side of

equation (2.1), to make the total Hamiltonian translationally invariant. This can be checked
by eliminating the coupling term (i.e. the third term) with the aid of a unitary transformation,
defined by

U = eHs
∑

k

gk
h̄ωk

(b
†
k−bk) (2.2)

and it is evident that

H̃T ≡ UHTU
−1 = Hs +

∑
k

h̄ωkb
†
kbk (2.3)

which is manifestly translationally invariant.
A formal solution of the Liouville equation can be given by

ρ(t) = e−iHTt ρ(0)eiHTt (2.4)

where ρ(0) is the initial joint density matrix of the system and bath. The latter is assumed to
be factorizable, i.e.

ρ(0) = ρs(0)ρB(0) (2.5)

where ρB(0) is the equilibrium bath density. The matrix element in the system space is

ρnm(t) = e−i(En−Em)t/h̄e
− i

h̄
(E2

n−E2
m)

∑
j

g2
j

h̄ωj
t
e−iHnt/h̄ρB(0)e

iHmt/h̄ρsnm(0) (2.6)

where

Hn =
∑
k

[h̄ωkb
†
kbk + Engk(bk + b

†
k)]. (2.7)

Taking the trace over the bath operators we obtain

ρsnm(t) = e−i(En−Em)t/h̄ TrB(ρB(0)e
iHmt/h̄e−iHnt/h̄)ρsnm(0). (2.8)

To simplify the above expression we write

H(k)
m =

[
h̄ωkB

†
kBk − E2

mg
2
k

h̄ωk

]
(2.9)

where

Bk = bk +
Emgk

h̄ωk

. (2.10)
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Bk can be re-expressed as

Bk = D†(α)bkD(α) (2.11)

where D(α) = eαb
†
k−α∗bk with α = Emgk

h̄ωk
. Therefore, one can write

eiHk
mt/h̄ = e−iα2ωktD†(α)eitωkb

†
kbkD(α). (2.12)

Now on making use of the properties

eixb†
kbkD(α) = D(αeix)eixb†

kbk (2.13)

and

D(α)D(β) = D(α + β)e
1
2 (αβ

∗−α∗β) (2.14)

we obtain

eiHk
mt/h̄ = e−iα2(ωkt−Sin(ωkt))D(α(eiωkt − 1))eitωkb

†
kbk . (2.15)

Therefore one can write

eiHk
mt/h̄eiHk

n t/h̄ = e
−i(E2

m−E2
n)

∑
k

g2
k

h̄2ω2
k

(ωkt−Sin(ωkt))
e
−2(Em−En)

2 ∑
k

g2
k

h̄2ω2
k

Sin2(ωkt/2)
eλkb

†
k e−λ∗

kbk (2.16)

where

λk = (Em − En)
gk

h̄ωk

(eiωkt − 1). (2.17)

We next use the standard result [10]

TrB ρB

∏
k

eλkb
†
k e−λ∗

kbk = en̄k |λk |
2

(2.18)

where

n̄k = 1
2 [coth(βh̄ωk/2) − 1] (2.19)

with

ρB =
∏
k

(1 − e−βh̄ωk )e−h̄ωkβb
†
kbk . (2.20)

Hence we have the final solution as follows:

ρsnm(t) = e−i(En−Em)t/h̄ei(E2
n−E2

m)η(t)e−(En−Em)
2γ (t)ρsnm(0) (2.21)

where

η(t) = −
∑
k

g2
k

h̄2ω2
k

Sin(ωkt) (2.22)

and

γ (t) = 2
∑
k

g2
k

h̄2ω2
k

Sin2(ωkt/2) coth(βh̄ωk/2). (2.23)

Note that the above result does not depend on the structure of Hs, the system Hamiltonian,
unlike the quantum Brownian case.

We now assume the bath oscillators to be continuously distributed with a spectral density
G(ω), so that for an arbitrary function f (ω) the continuum limit implies

∑
k

g2
k

h̄2 f (ωk) →
∫ ∞

0
dωG(ω)f (ω). (2.24)
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For the special case of ohmic spectral density [3]

G(ω) = γ0

π
ωe−ω/ωc (2.25)

where γ0 has the dimension of 1/(energy)2. γ0 and ωc are the two bath parameters
characterizing the quantum noise, which correspond to the strength of the noise and the inverse
of the correlation time respectively.

One can find the rate equation equivalent to the above equation of ρsn,m(t) as

dρsnm(t)

dt
= −iω0(En − Em)ρ

s
nm(t) + iη̇(t)(E2

n − E2
m)ρ

s
nm(t) − γ̇ (t)(En − Em)

2ρsnm(t).

(2.26)

Similarly, a master equation can be written in the operator form as

ρ̇s = −i[Hs, ρ
s] + iη̇(t)[H 2

s , ρ
s] − γ̇ (t)(H 2

s ρ
s − 2Hsρ

sHs + ρsH 2
s ). (2.27)

We now discuss implications of these results for the ohmic bath. First note that for the
above spectral density, η(t) can be calculated as

η(t) = −γ0

π
tan−1 ωct. (2.28)

On the other hand, the expression for γ̇ (t) cannot be obtained analytically for all times and
at arbitrary temperature and we perform numerical integration for exact evaluation. At high
temperature, we consider the Markov limit by replacing coth( h̄ω

2kT ) by 2kT
h̄ω

. Then the expression
of γ̇ (t) will be equal to

γ̇ (t) = 2kT γ0

πh̄
tan−1(ωct). (2.29)

Hence, we may obtain various limiting cases of decoherence. For example, in the classical
stochastic noise process Kubo [10] had coined the terms slow-modulation (SM) and fast-
modulation (FM) limits. In a similar spirit one can investigate two cases. (a) ωct 
 1, so that
tan−1 ωct ≈ π/2. In this limit γ̇ (t) assumes the BM value, γBM, and we obtain

γBM = γ0kT

h̄
. (2.30)

This is used in [9].
(b) When ωct � 1 one can write tan−1 ωct ≈ ωct . Therefore, in the SM limit γ̇ (t) can

be written as

γSM = 2

π
γBMωct. (2.31)

In what follows we compare the time dependence of the exact γ̇ (t) with the two cases
of Markovian limiting values as described above. In figure 1 we have plotted a scaled γ̇ (t)

as gamma(t) = log10
γ̇ (t)

γBM
≡ E/BM, or gamma(t) = log10

γ̇ (t)

γSM
≡ E/SM with a scaled time,

log10(ω0t), for two different values of ωc
ω0

= 0.01 (figure 1(a)) and 10.0 (figure 1(b)) at fixed

low temperature kT
h̄ω0

= 0.1. Here ω0 is an arbitrary scaling frequency of the system. One finds
that at early time E/SM = 0 and this quantity goes to −∞ as the scaled time tω0 goes to +∞,
but E/BM increases linearly with time at early times and then it assumes the value zero, after
a time that depends on ωc. When ωc

ω0
increases, the exact γ̇ (t) assumes the γBM value quite

rapidly and deviates from the γSM value. With increase in temperature this picture does not
change much except that the exact γ̇ (t) assumes the γBM value even more rapidly at moderate
values of ωc

ω0
.

This implies that at very early times γ̇ (t) is proportional to time, and then after some
incubation period, depending on the correlation time of the bath, ω−1

c , γ̇ (t) assumes the BM
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Figure 1. Scaled γ̇ (t) is plotted as Gamma(t) = log10
γ̇ (t)
γBM

≡ E/BM, or Gamma(t) =
log10

γ̇ (t)
γSM

≡ E/SM with a scaled time, log10(ω0t), for two different values of ωc
ω0

= 0.01

(figure 1(a)) and 10.0 (figure 1(b)) at a fixed low temperature kT
h̄ω0

= 0.1. Here ω0 is an arbitrary
scaling frequency of the system.

result. For not so short correlation times and low temperatures, the γ̇ (t) value oscillates before
arriving at the BM value, γBM. These details are not shown in the figures. Note that this
result does not depend on the structure of Hs at all, unlike the quantum Brownian case, i.e. for
non-diagonal coupling with the bath.

To probe the decoherence behaviour in the special case whenHs represents the Hamiltonian
of a harmonic oscillator we have calculated the survival probability P(t) = Tr(ρs(0)ρs(t)),
where ρs(t) is the reduced density of the system, taking the initial density matrix of coherent
state, ρs(0) = |α〉〈α|. P(t) is therefore written as

P(t) =
∑
m,n

|ρsm,n(0)|2Un,m(t) (2.32)

where

Un,m(t) = e−it (n−m)ω0 eih̄2ω2
0[(n2−m2)+(n−m)]η(t)e−h̄2ω2

0(n−m)2γ (t) (2.33)

and for a harmonic oscillator En = (n + 1
2 )h̄ω0. Note that the term eih̄2ω2

0(n−m)η(t) in Unm(t)

depends on the zero-point energy of the harmonic oscillator.
In figure 2 we have shown the plots of survival probability for exact dynamics, BM

dynamics and in the SM limit, at fixed low temperature kT
h̄ω0

= 0.1. We have taken

(h̄ω0)
2γ0 = 0.1 and α = 1.0. In figure 2(a), ωc

ω0
= 0.01, the exact dynamics is closer to
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Figure 2. Survival probability, for exact dynamics (exact), by the BM dynamics and due to
decoherence in the SM limit, is plotted with scaled time, log10(ω0t). In figure 2(a), ωc

ω0
= 0.01,

the exact dynamics is closer to BM than SM, but in figure 2(b), ωc
ω0

= 10.0, the exact dynamics is
closer to SM than BM.

BM than SM, but in figure 2(b), ωc
ω0

= 10.0, the exact dynamics is closer to SM than BM. This
is apparent from the dependence of γSM on ωc. Here we find oscillatory decay in the exact
dynamics before the survival probability saturates to its asymptotic value

∑
m |ρsmm(0)|2. At

higher temperatures at a certain moderate value of ωc, these three curves coincide because the
decoherence rate increases very fast with increase in time. There are more oscillations at lower
temperatures. This oscillatory behaviour is a signature of the quantum nature of the bath.

3. Master equation for a system undergoing random frequency modulation

Here we consider an arbitrary quantum system undergoing random frequency modulation
by a classical stochastic process. We construct a master equation for the random frequency
modulation case and compare with the case of the system–bath model in the earlier section.

The equation of motion for the density matrix of a quantum system in the eigenbasis of
the Hamiltonian, {|En〉}, which can be given by

ρ̇nm = −i&nmρnm (3.1)

where ρnm = 〈En|ρ|Em〉 and &nm = (En − Em)/h̄. Let us assume that the transition
frequencies &nm undergo a random modulation by a stationary Gaussian noise, i.e. &nm is
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now time dependent, and say

&nm(t) = ωnm[1 + β(t)] (3.2)

so that equation (3.1) becomes

ρ̇nm = −iωnm(1 + β(t))ρnm (3.3)

with

ωnm = En − Em

h̄
(3.4)

〈β(t)〉 = 0 (3.5)

and

〈β(t)β(t ′)〉 = '(t − t ′). (3.6)

One can straightforwardly solve [4] for the averaged density matrix as

〈ρnm(t)〉 = e−iωnmte− ω2
nm
2

∫ t

0 dt1
∫ t

0 dt2 '(t1−t2)ρnm(0) (3.7)

where the symbol 〈· · ·〉 means the average over the classical stochastic variable.
The above equation can be cast into an equivalent master equation as

〈ρ̇nm〉 = −iωnm〈ρnm〉 − (En − Em)
2γ̇cl(t)〈ρnm〉 (3.8)

where we have defined

γcl(t) = 1

2h̄2

∫ t

0
dt1

∫ t

0
dt2 '(t1 − t2). (3.9)

Note that, like γ (t) in the quantum case, γcl(t) too is system independent. The master
equation can be written in the operator form as

〈ρ̇〉 = −i[Hs, 〈ρ〉] − γ̇cl(t)(H
2
s 〈ρ〉 − 2Hs〈ρ〉Hs + 〈ρ〉H 2

s ). (3.10)

The remarkable point is that it is generally valid for any structure of '(t1 − t2). Only the
classical stochastic modulation has to be Gaussian if we are to obtain the same structure for
the master equation as in the quantum BM case.

4. Diffusion: harmonic oscillator system

Here we have analysed the result of the last two sections for the case of a harmonic oscillator
as the system of interest. The master equations in the two cases can be cast into the respective
equivalent equations of quasiprobability distribution functions in a quasiclassical phase space.
Then it is shown that the behaviour of diffusion in the two cases is different.

Considering a harmonic oscillator as the system of interest, i.e.

Hs = h̄ω0(a
†a + 1/2) (4.1)

the master equation for the quantum system–bath case in section 2 becomes

ρ̇s = −iω0[a†a, ρs] + iη̇(t)[(a†a)2 + a†a, ρs] − γ̇ (t)[(a†a)2ρs − 2a†aρsa†a + ρs(a†a)2].

(4.2)

Thus, in the master equation where we have considered the bath to be quantum mechanical
in nature, there is an an additional Kerr term. On the other hand, the classical equation,
where the environment is modelled as a classical stochastic process but the system is quantum
mechanical, has the structure

ρ̇s = −iω0[a†a, ρs] − h̄2ω2
0γ̇cl(t)[(a

†a)2ρs − 2a†aρsa†a + ρs(a†a)2]. (4.3)
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It is well understood that the master equation for the classical case can be cast into the
form of the equation of motion of the Glauber–Sudarshan [12] P -distribution function. Using

ρ =
∫

d2αP (α)|α〉〈α| (4.4)

the master equation of the classical case can be cast into the form of the diffusion equation,

∂P

∂t
= −ω0

(
∂

∂α
α − ∂

∂α∗α
∗
)
P − γ̇cl(t) h̄

2ω2
0

(
∂

∂α
α − ∂

∂α∗α
∗
)2

P. (4.5)

In polar co-ordinates α = reiθ , the above equation becomes

∂P

∂t
= 2iω0

∂P

∂θ
+ 4γ̇cl(t) h̄

2ω2
0

(
∂2P

∂θ2

)
. (4.6)

The second term represents time-dependent diffusion on a circle. This is the reason why the
randomly modulated oscillator is taken to model the output of a laser far above threshold,
which ideally undergoes only phase fluctuations and no amplitude fluctuation [4].

Furthermore one can also look upon θ as the classical phase of the optical field. In
this spirit therefore one can say that, just as the randomly modulated oscillator describes the
diffusion of the classical phase of the single-mode light field, the quantum nondemolition
Hamiltonian [9] describes diffusion of the ‘quantum’ phase [13] of the light field. The Pegg–
Barnett analysis [13] of the quantum phase of the exact quantum master equation is interesting
to investigate and is left for future work. However it should be noted that the equation of
motion for the P -distribution corresponding to the quantum mechanical master equation is not
a pure diffusion equation because of the presence of the additional Kerr-like term.

5. Effective Hamiltonian with quantum stochastic terms:

Here we would like to show that the model of the quantum system–bath case that we have
considered in section 2 can equivalently be cast into the form of a randomly modulated quantum
system where the random modulation is a quantum stochastic process. For this purpose we
have assumed that the system is a harmonic oscillator and subsequently we have constructed an
effective Hamiltonian. In the high-temperature limit, the effective quantum stochastic process
gives the same result as a classical stochastic process and consequently we could provide the
microscopic basis of Kubo’s result as a limiting case of our exact result.

From the Hamiltonian

H = h̄ω0(a
†a + 1/2) +

∑
k

h̄ωkb
†
kbk +

∑
k

gk(b
†
k + bk)h̄ω0(a

†a + 1/2)

+[h̄ω0(a
†a + 1/2)]2

∑
k

g2
k

h̄ωk

(5.1)

one can write the Heisenberg equation of motion for the bath operators

ḃk = −iωkbk − igkω0(a
†a + 1/2). (5.2)

Noting that a†a is a constant of motion the above equation can be solved to give

bk(t) = e−iωktbk(0) − gk

ωk

(1 − e−iωkt )ω0(a
†a + 1/2). (5.3)

Similarly, the Heisenberg equation of motion for the system is

ȧ = −iω0a − i
∑
k

gkω0(bk(t) + b
†
k(t))a + i2(h̄ω0)

2(a†a + 1)a
∑
k

g2
k

h̄ωk

. (5.4)
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Using the formal solutions of the bath operators we obtain

ȧ = −iω0a − iω0B(t)a + iη̇(t)2h̄2ω2
0(a

†a + 1/2)a (5.5)

where we have defined

B(t) =
∑
k

gk(e
−iωktbk(0) + eiωktb

†
k(0)) (5.6)

and

η̇(t) = −
∑
k

g2
k

h̄2ωk

cosωkt. (5.7)

For a thermal bath one can find that

〈B(t)〉 = 0 (5.8)

〈B(t1)B(t2)〉 =
∑
k

g2
k

[
e−iωk(t1−t2)(1 + n̄(ωk)) + eiωk(t1−t2)n̄(ωk)

]
. (5.9)

In the high-temperature limit, i.e. n̄(ω) ≈ 1
βh̄ω

, and then taking the continuum bath density
modes, we obtain

〈B(t1)B(t2)〉 = 2h̄

β

∫ ∞

0
dω

G(ω)

ω
cosω(t1 − t2) ≡ '(t1 − t2) (5.10)

as in the stochastic model.
For the ohmic bath [3] G(ω) = γ0

π
ωe−ω/ωc one can show that

〈B(t1)B(t2)〉 = 2/ωc
1
ω2

c
+ (t1 − t2)2

h̄γ0

πβ
(5.11)

which in the limit ωc → ∞ becomes

〈B(t1)B(t2)〉 = 4h̄γ0

β
δ(t1 − t2). (5.12)

If we take a Lorentzian cut-off function, i.e.

G(ω) = γ0

π
ω

ω2
c

ω2 + ω2
c

(5.13)

then

〈B(t1)B(t2)〉 = 4h̄γ0

β
ωce−ωc|t1−t2| (5.14)

and this will correspond to the Kubo oscillator case [10]. Thus using the later G(ω) in
equation (5.13) and in the high-temperature limit we obtain

γ̇ (t) = γ0
2kT

h̄
[1 − e−ωct ] (5.15)

which gives the same result of SM and FM limits as given in equations (2.28) and (2.29)
respectively. This establishes the exact microscopic picture of Kubo’s result [10].

Thus we have shown that in the high-temperature limit the correlations of B operators
are described by a classical stationary Gaussian process. The same cannot be done for low T

because the underlying probability distribution would not be positive definite.
Note that equation (5.5) follows from the effective Hamiltonian as

ȧ = i

h̄
[Heff(t), a] (5.16)
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where

Heff(t) = h̄ω0(a
†a + 1

2 )(1 + B(t)) − 2η̇(t)(a†a + 1
2 )

2h̄2ω2
0. (5.17)

If one now makes the ansatz that theHeff governs the time evolution of the reduced density
operator of the harmonic oscillator, i.e.

ρ̇s = − i

h̄
[Heff(t), ρ

s] (5.18)

one can straightforwardly arrive at the general solution as given in section 3.

6. Conclusion

We have given an exact solution to the model of environment-induced dissipationless
decoherence. The equation of motion of the reduced density matrix is in the Lindblad [14] form
where the co-efficients are time dependent. Thereby we could provide two different approaches
to look at the dissipationless decoherence problem. (i) We could obtain a microscopic point of
view where it is shown how the quantum nature of the bath influences the decoherence process.
(ii) The same process is understood as a quantum stochastic process by introducing an effective
Hamiltonian. From both approaches one can obtain a straightforward limit of a quantum system
whose characteristic frequency is modulated stochastically. For the quantum system–bath case
a nonlinear drift motion appears in the system along with the usual decoherence part which
appears in both cases. When the system is a harmonic oscillator this nonlinear drift term is a
Kerr nonlinear term. For the quantum bath case this nonlinearity will induce an extra diffusion
mechanism along with classical phase diffusion.
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